Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Ergon ; 118: 104279, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38565008

RESUMO

Previous research has shown there are particular patterns of license plate designs that are easier to recall. Missouri license plate patterns (AB1-C2D) somewhat diverge from what research suggests works best for recall. The current study examined whether incorporating color into license plates would improve recall, and also whether awareness or explanation of license plate formats would affect recall accuracy. Across two experiments, participants viewed license plate stimuli with and without color and attempted to recall them. The hypothesis was that incorporating color would improve recall, but the hypothesis was not supported. Results also did not show that prior exposure or explanation of formats affected accuracy. Future research should explore additional ways to improve license plate designs that would be easy to implement. Such improvements to license plate design would be useful because efforts to improve the public's awareness of formats would be expensive and likely ineffective.


Assuntos
Cor , Rememoração Mental , Humanos , Masculino , Feminino , Adulto , Adulto Jovem , Licenciamento , Conscientização , Condução de Veículo/psicologia , Adolescente
2.
Biomacromolecules ; 24(3): 1463-1474, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36791420

RESUMO

Producing recombinant spider silk fibers that exhibit mechanical properties approaching native spider silk is highly dependent on the constitution of the spinning dope. Previously published work has shown that recombinant spider silk fibers spun from dopes with phosphate-induced pre-assembly (biomimetic dopes) display a toughness approaching native spider silks far exceeding the mechanical properties of fibers spun from dopes without pre-assembly (classical dopes). Dynamic light scattering experiments comparing the two dopes reveal that biomimetic dope displays a systematic increase in assembly size over time, while light microscopy indicates liquid-liquid-phase separation (LLPS) as evidenced by the formation of micron-scale liquid droplets. Solution nuclear magnetic resonance (NMR) shows that the structural state in classical and biomimetic dopes displays a general random coil conformation in both cases; however, some subtle but distinct differences are observed, including a more ordered state for the biomimetic dope and small chemical shift perturbations indicating differences in hydrogen bonding of the protein in the different dopes with notable changes occurring for Tyr residues. Solid-state NMR demonstrates that the final wet-spun fibers from the two dopes display no structural differences of the poly(Ala) stretches, but biomimetic fibers display a significant difference in Tyr ring packing in non-ß-sheet, disordered helical domains that can be traced back to differences in dope preparations. It is concluded that phosphate pre-orders the recombinant silk protein in biomimetic dopes resulting in LLPS and fibers that exhibit vastly improved toughness that could be due to aromatic ring packing differences in non-ß-sheet domains that contain Tyr.


Assuntos
Fibroínas , Aranhas , Animais , Seda/química , Proteínas de Artrópodes , Proteínas Recombinantes/química , Microscopia , Tirosina , Fibroínas/química
3.
Nat Biotechnol ; 41(1): 60-69, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35879361

RESUMO

Extending the success of cellular immunotherapies against blood cancers to the realm of solid tumors will require improved in vitro models that reveal therapeutic modes of action at the molecular level. Here we describe a system, called BEHAV3D, developed to study the dynamic interactions of immune cells and patient cancer organoids by means of imaging and transcriptomics. We apply BEHAV3D to live-track >150,000 engineered T cells cultured with patient-derived, solid-tumor organoids, identifying a 'super engager' behavioral cluster comprising T cells with potent serial killing capacity. Among other T cell concepts we also study cancer metabolome-sensing engineered T cells (TEGs) and detect behavior-specific gene signatures that include a group of 27 genes with no previously described T cell function that are expressed by super engager killer TEGs. We further show that type I interferon can prime resistant organoids for TEG-mediated killing. BEHAV3D is a promising tool for the characterization of behavioral-phenotypic heterogeneity of cellular immunotherapies and may support the optimization of personalized solid-tumor-targeting cell therapies.


Assuntos
Neoplasias , Linfócitos T , Humanos , Neoplasias/genética , Neoplasias/terapia , Imunoterapia/métodos , Organoides/patologia
4.
Biomacromolecules ; 22(8): 3377-3385, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34251190

RESUMO

Black widow spider dragline silk is one of nature's high-performance biological polymers, exceeding the strength and toughness of most man-made materials including high tensile steel and Kevlar. Major ampullate (Ma), or dragline silk, is primarily comprised of two spidroin proteins (Sp) stored within the Ma gland. In the native gland environment, the MaSp1 and MaSp2 proteins self-associate to form hierarchical 200-300 nm superstructures despite being intrinsically disordered proteins (IDPs). Here, dynamic light scattering (DLS), three-dimensional (3D) triple resonance solution NMR, and diffusion NMR is utilized to probe the MaSp size, molecular structure, and dynamics of these protein pre-assemblies diluted in 4 M urea and identify specific regions of the proteins important for silk protein pre-assembly. 3D NMR indicates that the Gly-Ala-Ala and Ala-Ala-Gly motifs flanking the poly(Ala) runs, which comprise the ß-sheet forming domains in fibers, are perturbed by urea, suggesting that these regions may be important for silk protein pre-assembly stabilization.


Assuntos
Viúva Negra , Fibroínas , Aranhas , Sequência de Aminoácidos , Animais , Humanos , Espectroscopia de Ressonância Magnética , Serina Proteases Associadas a Proteína de Ligação a Manose , Seda
5.
Nat Biotechnol ; 39(10): 1239-1245, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34083793

RESUMO

Despite advances in three-dimensional (3D) imaging, it remains challenging to profile all the cells within a large 3D tissue, including the morphology and organization of the many cell types present. Here, we introduce eight-color, multispectral, large-scale single-cell resolution 3D (mLSR-3D) imaging and image analysis software for the parallelized, deep learning-based segmentation of large numbers of single cells in tissues, called segmentation analysis by parallelization of 3D datasets (STAPL-3D). Applying the method to pediatric Wilms tumor, we extract molecular, spatial and morphological features of millions of cells and reconstruct the tumor's spatio-phenotypic patterning. In situ population profiling and pseudotime ordering reveals a highly disorganized spatial pattern in Wilms tumor compared to healthy fetal kidney, yet cellular profiles closely resembling human fetal kidney cells could be observed. In addition, we identify previously unreported tumor-specific populations, uniquely characterized by their spatial embedding or morphological attributes. Our results demonstrate the use of combining mLSR-3D and STAPL-3D to generate a comprehensive cellular map of human tumors.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Neoplasias/diagnóstico por imagem , Biomarcadores Tumorais/metabolismo , Aprendizado Profundo , Corantes Fluorescentes , Humanos , Rim/diagnóstico por imagem , Neoplasias/metabolismo , Neoplasias/patologia , Fenótipo , Software
6.
Dev Dyn ; 250(11): 1568-1583, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33848015

RESUMO

BACKGROUND: Nephron progenitor cells (NPCs) undergo a stepwise process to generate all mature nephron structures. Mesenchymal to epithelial transition (MET) is considered a multistep process of NPC differentiation to ensure progressive establishment of new nephrons. However, despite this important role, to date, no marker for NPCs undergoing MET in the nephron exists. RESULTS: Here, we identify LGR6 as a NPC marker, expressed in very early cap mesenchyme, pre-tubular aggregates, renal vesicles, and in segments of S-shaped bodies, following the trajectory of MET. By using a lineage tracing approach in embryonic explants in combination with confocal imaging and single-cell RNA sequencing, we provide evidence for the multiple fates of LGR6+ cells during embryonic nephrogenesis. Moreover, by using long-term in vivo lineage tracing, we show that postnatal LGR6+ cells are capable of generating the multiple lineages of the nephrons. CONCLUSIONS: Given the profound early mesenchymal expression and MET signature of LGR6+ cells, together with the lineage tracing of mesenchymal LGR6+ cells, we conclude that LGR6+ cells contribute to all nephrogenic segments by undergoing MET. LGR6+ cells can therefore be considered an early committed NPC population during embryonic and postnatal nephrogenesis with potential regenerative capability.


Assuntos
Néfrons , Células-Tronco , Diferenciação Celular , Mesoderma , Organogênese/genética
7.
Front Neurosci ; 15: 779533, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35280340

RESUMO

Pre-clinical models of traumatic brain injury (TBI) have been the primary experimental tool for understanding the potential mechanisms and cellular alterations that follow brain injury, but the human relevance and translational value of these models are often called into question. Efforts to better recapitulate injury biomechanics and the use of non-rodent species with neuroanatomical similarities to humans may address these concerns and promise to advance experimental studies toward clinical impact. In addition to improving translational aspects of animal models, it is also advantageous to establish pre-clinical outcomes that can be directly compared with the same outcomes in humans. Non-invasive imaging and particularly MRI is promising for this purpose given that MRI is a primary tool for clinical diagnosis and at the same time increasingly available at the pre-clinical level. The objective of this study was to identify which commonly used radiologic markers of TBI outcomes can be found also in a translationally relevant pre-clinical model of TBI. The ferret was selected as a human relevant species for this study with folded cortical geometry and relatively high white matter content and the closed head injury model of engineered rotation and acceleration (CHIMERA) TBI model was selected for biomechanical similarities to human injury. A comprehensive battery of MRI protocols based on common data elements (CDEs) for human TBI was collected longitudinally for the identification of MRI markers and voxelwise analysis of T2, contrast enhancement and diffusion tensor MRI values. The most prominent MRI findings were consistent with focal hemorrhage and edema in the brain stem region following high severity injury as well as vascular and meningeal injury evident by contrast enhancement. While conventional MRI outcomes were not highly conspicuous in less severe cases, quantitative voxelwise analysis indicated diffusivity and anisotropy alterations in the acute and chronic periods after TBI. The main conclusions of this study support the translational relevance of closed head TBI models in intermediate species and identify brain stem and meningeal vulnerability. Additionally, the MRI findings highlight a subset of CDEs with promise to bridge pre-clinical studies with human TBI outcomes.

8.
Sci Rep ; 10(1): 17667, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33077751

RESUMO

Neuroblastoma resection represents a major challenge in pediatric surgery, because of the high risk of complications. Fluorescence-guided surgery (FGS) could lower this risk by facilitating discrimination of tumor from normal tissue and is gaining momentum in adult oncology. Here, we provide the first molecular-targeted fluorescent agent for FGS in pediatric oncology, by developing and preclinically evaluating a GD2-specific tracer consisting of the immunotherapeutic antibody dinutuximab-beta, recently approved for neuroblastoma treatment, conjugated to near-infrared (NIR) fluorescent dye IRDye800CW. We demonstrated specific binding of anti-GD2-IRDye800CW to human neuroblastoma cells in vitro and in vivo using xenograft mouse models. Furthermore, we defined an optimal dose of 1 nmol, an imaging time window of 4 days after administration and show that neoadjuvant treatment with anti-GD2 immunotherapy does not interfere with fluorescence imaging. Importantly, as we observed universal, yet heterogeneous expression of GD2 on neuroblastoma tissue of a wide range of patients, we implemented a xenograft model of patient-derived neuroblastoma organoids with differential GD2 expression and show that even low GD2 expressing tumors still provide an adequate real-time fluorescence signal. Hence, the imaging advancement presented in this study offers an opportunity for improving surgery and potentially survival of a broad group of children with neuroblastoma.


Assuntos
Benzenossulfonatos/uso terapêutico , Neoplasias Encefálicas/cirurgia , Corantes Fluorescentes/uso terapêutico , Gangliosídeos/metabolismo , Indóis/uso terapêutico , Neuroblastoma/cirurgia , Animais , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Feminino , Citometria de Fluxo , Humanos , Camundongos , Camundongos Nus , Transplante de Neoplasias , Neoplasias Experimentais , Neuroblastoma/metabolismo , Análise Serial de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA